Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra
نویسندگان
چکیده
Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.
منابع مشابه
Sequentially shifted excitation Raman spectroscopy: novel algorithm and instrumentation for fluorescence-free Raman spectroscopy in spectral space.
A novel Raman spectrometer is presented in a handheld format. The spectrometer utilizes a temperature-controlled, distributed Bragg reflector diode laser, which allows the instrument to operate in a sequentially shifted excitation mode to eliminate fluorescence backgrounds, fixed pattern noise, and room lights, while keeping the Raman data in true spectral space. The cost-efficient design of th...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملCommon Raman Spectral Markers among Different Tissues for Cancer Detection
Introduction Raman spectroscopy is a vibrational spectroscopic technique, based on inelastic scattering of monochromatic light. This technique can provide valuable information about biomolecular changes, associated with neoplastic transformation. The purpose of this study was to find Raman spectral markers for distinguishing normal samples from cancerous ones in different tissues. Materials and...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملOptimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کامل